

Towards Better Generalization: Joint Depth-Pose Learning without PoseNet

Wang Zhao, Shaohui Liu, Yezhi Shu, Yong-Jin Liu

Tsinghua University

Monocular Depth-Pose Prediction

Depth and Pose

RGB

PoseNet Fails to Generalize!

Depth estimation in Indoor environments with complex camera motions and low texture

Visual Odometry with Unseen Camera Ego-motions

Built on top of two-frame structure-from-motion

- Correspondences are sampled based on the occlusion mask and the forward-backward consistency score produced by the optical flow network .
- 8-Point algorithm is implemented in RANSAC loop to robustly recover the relative pose.
- Epipolar distance (Inlier mask) is calculated and used to further filter out the incorrect matchings and non-rigid objects.

- We sample 6k matches from flow to triangulate, according to the occlusion mask, forward-backward score, and the inlier mask.
- We use mid-point triangulation for its convenience and it's naturally differentiable.
- A match is abandoned if the angle between two rays is too small.

- Predicted depth is aligned with triangulation depth map to have a consistent scale.
- Triangulation loss, depth re-projection loss and the depth smoothness loss are used to supervise the depth-net.

Scale Disentanglement

- 1. The translation value t of estimated pose [R, t] from monocular video is up-to-scale!
- 2. Monocular depth prediction *D* from network has a learnt scale.
- 3. Joint training losses require a consistent scale across learnt depth and pose.

Scale Disentanglement

PoseNet needs to learn a translation scale consistent with DepthNet

No need for network to learn a translation scale consistent with DepthNet

Quantitative Results on KITTI dataset

	Error			Accuracy, δ							
Method	AbsRel	SqRel	RMS	RMSlog	<1.25	$< 1.25^{2}$	$< 1.25^{3}$				
Zhou <i>et al</i> . [66]	0.183	1.595	6.709	0.270	0.734	0.902	0.959	Method	Noc	All	Fl
Mahjourian et al. [35]	0.163	1.240	6.220	0.250	0.762	0.916	0.968	FlowNetS [22]	8.12	14.19	-
Geonet [61]	0.155	1.296	5.857	0.233	0.793	0.931	0.973	FlowNet2 [51]	4.93	10.06	30.37%
DDVO [54]	0.151	1.257	5.583	0.228	0.810	0.936	0.974	 UnFlow [37]	_	8 10	23 27%
DF-Net [67]	0.150	1.124	5.507	0.223	0.806	0.933	0.973		-	0.10	23.2770
CC [41]	0.140	1.070	5.326	0.217	0.826	0.941	0.975	 Back2Future [23]	-	/.04	24.21%
EPC++ [34]	0.141	1.029	5.350	0.216	0.816	0.941	0.976	Geonet [61]	8.05	10.81	-
Struct2depth (-ref.) [5]	0.141	1.026	5.291	0.215	0.816	0.945	0.979	DF-Net [67]	-	8.98	26.01%
GLNet (-ref.) [6]	0.135	1.070	5.230	0.210	0.841	0.948	0.980	EPC++ [34]	_	5.84	-
SC-SfMLearner [2]	0.137	1.089	5.439	0.217	0.830	0.942	0.975	CC [41]	_	5 66	20.93%
Gordon <i>et al</i> . [16]	0.128	0.959	5.230	0.212	0.845	0.947	0.976	CL Nat [6]	1.96	0.25	20.7570
Monodepth2 [14]	0.132	1.044	5.142	0.210	0.845	0.948	0.977	GLINET [0]	4.80	8.33	-
Monodepth2 [†] [14]	0.115	0.882	4.701	0.190	0.879	0.961	0.982	Ours (FlowNet-only)	4.96	8.97	25.84%
Ours (w/o L_p)	0.135	0.932	5.128	0.208	0.830	0.943	0.978	Ours	3.60	5.72	18.05%
Ours (w/o pretraining)	0.130	0.893	5.062	0.205	0.832	0.949	0.981				
Ours [†]	0.113	0.704	4.581	0.184	0.871	0.961	0.984				

Our method achieves state-of-the-art performances on KITTI depth and optical flow estimation.

Robustness Improved – KITTI

Robustness Improved – TUM

Visual Odometry with Indoor Environments

Robustness Improved – NYUv2

Robustness Improved – NYUv2

	Error				Accuracy,	δ			
Method	rel	log10	rms	< 1.25	$< 1.25^{2}$	$< 1.25^{3}$	Depth Estimation in Indoor		
Make3D [46]	0.349	-	1.214	0.447	0.745	0.897	Environmente		
Li <i>et al</i> . [28]	0.232	0.094	0.821	0.621	0.886	0.968	Environments		
MS-CRF [58]	0.121	0.052	0.586	0.811	0.954	0.987			
DORN [10]	0.115	0.051	0.509	0.828	0.965	0.992			
Zhou <i>et al</i> . [64]	0.208	0.086	0.712	0.674	0.900	0.968	PoseNet-based		
PoseNet	0.283	0.122	0.867	0.567	0.818	0.912			
PoseNet-Flow	0.221	0.091	0.764	0.659	0.883	0.959			
Ours	0.201	0.085	0.708	0.687	0.903	0.968			
Ours (448×576)	0.189	0.079	0.686	0.701	0.912	0.978	Our system		

Best performance on NYUv2 among unsupervised methods!

Code and model are available here

Link: https://github.com/B1ueber2y/TrianFlow

Check our paper for more details!