
A1. Relationship between RepPoints and De-
formable RoI pooling

In this section, we explain the differences between our
method and deformable RoI pooling [4] in greater detail.
We first describe the translation sensitivity of the regression
step in the object detection pipeline. Then, we discuss how
deformable RoI pooling [1] works and why it does not pro-
vide a geometric representation of objects, unlike the pro-
posed RepPoints representation.

Translation Sensitivity We explain the translation sen-
sitivity of the regression step in the context of bounding
boxes. Denote a rectangular bounding box proposal be-
fore regression as BP and the ground-truth bounding box
as BGT . The target for bounding box regression can then be
expressed as

TP = F(BP ,BGT ), (1)

where F is a function for transforming BP to BGT . This
transformation is conventionally learned as a regression
function RB :

RB(PB(I,BP )) = TP = F(BP ,BGT ), (2)

where I is the input image and PB is a pooling function
defined over the rectangular proposal, e.g., direct cropping
of the image [2], RoIPooling [8], or RoIAlign [4]. This
formulation aims to predict the relative displacement to the
ground truth box based on features within the area of BP .
Shifts in BP should change the target accordingly:

RB(PB(I,BP + ∆B)) = F(BP + ∆B,BGT ). (3)

Thus, the pooled feature PB(I,BP ) should be sensitive
to the box proposal BP . Specifically, for any pair of pro-
posals B1 6= B2, we should have PB(I,B1) 6= PB(I,B2).
Most existing feature extractors PB satisfy this property.
Note that the improvement of RoIAlign [4] over RoIPooling
[8] is partly due to this guaranteed translation sensitivity.

Analysis of Deformable RoI Pooling. For deformable
RoI pooling [1], the system generates a pointwise defor-
mation of samples on a regular grid [4] to produce a set of
sample points SP for each proposal. This can be formulated
as

SP = D(I,BP ), (4)

where D is the function for generating the sample points.
Then, bounding box regression aims to learn a regression
function RS which utilizes the sampled features via SP to
predict the target TP as follows:

RS(PS(I, SP )) = TP = F(BP ,BGT ) (5)
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Figure 1. Illustration that deformable RoI pooling [1] is unable to
serve as a geometric object representation, as discussed in Section
4 in the main paper. We consider two bounding box regressions
based on different proposals. Assume that deformable RoI pooling
[1] can learn a similar geometric object representation where the
two sets of sample points lie at similar locations over the object of
interest. For that to happen, the sampled features would need to be
similar, such that the two proposals cannot be differentiated. How-
ever, deformable RoI pooling [1] can indeed differentiate nearby
object proposals, leading to a contradiction. Thus, it is concluded
that deformable RoI pooling [1] cannot learn the geometric repre-
sentation of objects.

Figure 2. Visualization of the learned sample points of 3×3 de-
formable RoI pooling [1]. It is shown that the scale of sample
points changes as the scale of the proposal changes, indicating that
the sample points do not adapt to form a geometric object repre-
sentation.

where PS is the pooling function with respect to the sample
points SP .

From the translation sensitivity property, we have
PS(I,D(I,B1)) 6= PS(I,D(I,B2)),∀B1 6= B2. Because
the pooled feature PS(I,D(I,B)) is determined by the lo-
cations of sample points D(I,B), we have D(I,B1) 6=
D(I,B2),∀B1 6= B2. This means that for two different
proposals B1 and B2 of the same object, the sample points
of these two proposals by deformable RoI pooling should
be different. Hence, the sample points of different propos-
als cannot correspond to the geometry of the same object.
They represent a property of the proposals rather than the
geometry of the object.

Figure 1 illustrates the contradiction that arises if de-
formable RoI pooling were a representation of object ge-
ometry. Moreover, Figure 2 illustrates that, for the learned



method backbone ms train ms test AP
RPDet R-50 38.6

R-50 X 40.8
R-50 X X 42.2

R-101 40.3
R-101 X 42.3
R-101 X X 44.1

R-101-DCN 43.0
R-101-DCN X 44.8
R-101-DCN X X 46.4
X-101-DCN 44.5
X-101-DCN X 45.6
X-101-DCN X X 46.8

Table 1. Benchmark results of RPDet on MS-COCO [7] valida-
tion set (minival). All the models here are trained with FPN [6]
under the ‘2x’ setting [3]. For the backbone notation, ‘R-50’ and
‘R-101’ denotes ResNet-50 and ResNet-101 [5] respectively. ‘R-
101-DCN’ denotes ResNet-101 with all convolution layers sub-
stituted with deformable convolution layers [1]. ‘X’ denotes the
ResNeXt-101 [9] backbone. “ms” indicates multi-scale.

sample points of two proposals for the same object by de-
formable RoI pooling, the sample points represent a prop-
erty of the proposals instead of the geometry of the object.

RepPoints In contrast to deformable RoI pooling where
the pooled features represent the original bounding box pro-
posals, the features extracted from RepPoints localize the
object. As it is not restricted by translation sensitivity re-
quirements, RepPoints can learn a geometric representation
of objects when localization supervision on the correspond-
ing pseudo box is provided (see Figure 4 in the main paper).
While object localization supervision is not applied on the
sample points of deformable RoI pooling, we show in Ta-
ble 2 in the main paper that such supervision is crucial for
RepPoints.

It is worth noting that deformable RoI pooling [1] is
shown to be complementary to the RepPoints representa-
tion (see Table 6 in the main paper), further indicating their
different functionality.

A2. More Benchmark Results for RPDet
We present more benchmark results of our proposed

detector RPDet in Table 1. Our PyTorch implementa-
tion is available at https://github.com/microsoft/RepPoints.
All models were tested on MS-COCO [7] validation set
(minival).
Multi-scale training and test settings. In multi-scale train-
ing, for each mini-batch, the shorter side is randomly se-
lected from a range of [480, 960]. In multi-scale test-
ing, we first resize each image to a shorter side of

{400, 600, 800, 1000, 1200, 1400}. Then the detection re-
sults (before NMS) from all scales are merged, followed by
a NMS step to produce the final detection results.
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