
Appendix

A. Network architecture
Our network architecture has two parts, one for em-

bedding the conditional input r to model uncertainty and
the other for encoding and decoding input images. Fig-
ure 1 shows the encoder-decoder network architecture. For
the embedding part, we set random input r as a 128-
dimensional vector. At the training stage and at the ini-
tialization of test stage, each dimension is sampled from
a Gaussian distribution N(0, 1). Then we use two fully-
connected layers (with 256 and 2304 output channels re-
spectively), a reshape layer (from 2304 to 24×32×3) and
two 3x3 convolutional layers (with 32 and 128 output chan-
nels respectively). For the encoder-decoder part, we use the
two-branch version proposed in [4]. This encoder-decoder
network consists of two prediction branches, one is used for
capturing high level structures and the other learns geomet-
ric continuity. Code will be made available.

First, the input image is encoded into an intermediate
latent variable zi and the random input is embedded as zr.
Both zi and zr have the equal shapes of 24×32×128. Then,
channel-wise concatenation is performed on the two en-
coded latent variables. Finally, the concatenated feature is
decoded into the output point cloud.

B. More Implementation Details
B.1. Datasets

ShapeNet [2] contains 57386 CAD models across 55 dif-
ferent categories. We randomly took 80% of the objects
for training and the rest for testing. For multi-view images
rendering, we used the off-the-shelf renderer1 provided by
[7]. For the groundtruth point clouds, we used the data2

provided by [1]. Each point cloud consists of 2048 points
uniformly sampled from the mesh on the dataset. We used
”chair” for single-category experiments and the 13 popular
categories following 3D-R2N2 [3] for multi-category exper-
iments.

Stanford Online Products [6] is an online repository ini-
tially released to accelerate the field of metric learning.
It contains automatically downloaded data from https:
//www.ebay.com. We used “chair” and “sofa” in our
experiments for multi-view reconstruction on real world im-
ages.

B.2. Baseline approaches

We reproduced several benchmark results of these meth-
ods on the datasets with their released code. In this section,

1https://github.com/shubhtuls/mvcSnP/tree/
master/preprocess/synthetic/rendering

2https://github.com/optas/latent_3d_points

we will show some details on these experiments.

3D-R2N2 [3] For the 32×32×32 voxelized groundtruth
for 3D-R2N2 [3], we directly used the provided voxels from
their repositories. Following the paper, we applied two-
stage training for 20k and 40k iterations on the training data.
For Chamfer Distance computation, we uniformly sampled
point clouds on the predicted voxels using their off-the-shelf
functions.

PTN [8] Similar to 3D-R2N2 [3], we uniformly sampled
point clouds on the predicted voxels to enable comparsion
with the groundtruth point clouds.

PSGN [4] For fair comparison, we used the two-branch
version of the network architecture described in [4] with
an output of 2048 points. We trained the fully-supervised
deterministic model for 100k iterations with an Adam initial
learning rate 1e-4.

Lin et al. [5] We followed the two-stage training strat-
egy in their paper. For the depth map rendered from the
fixed 8 poses, we used their off-the-shelf released data de-
scribed at https://github.com/chenhsuanlin/
3D-point-cloud-generation. As they only re-
leased data for single-category experiments, we did not re-
produce their 13-category results. Note that our input im-
ages and the groundtruth shapes are different from theirs
(our groundtruth consist of 2048 points for each shape,
which differs from their 10k dense point clouds). This made
us unable to directly compare our 13-category performance
with that reported in their main paper.

Table 1: Results of our model on different number of input
views. ‘n’ denotes the number of views. ‘cat1’ and ‘cat13’
denote single-category and multi-category experiments re-
spectively. CD (FPS-CD) is reported.

n cat13 cat1
1 5.76(5.76) 5.37(5.37)
2 4.80(4.93) 4.57(4.69)
3 4.32(4.59) 4.08(4.33)
4 4.04(4.44) 3.79(4.18)
5 3.92(4.42) 3.69(4.18)
6 3.77(4.37) 3.54(4.13)
7 3.67(4.36) 3.44(4.12)
8 3.58(4.34) 3.37(4.08)

B.3. Highly diverse generative model design

We present details on the highly diverse model used in
the final paragraph of Section 4.4 in our main paper. To

https://www.ebay.com
https://www.ebay.com
https://github.com/shubhtuls/mvcSnP/tree/master/preprocess/synthetic/rendering
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Figure 1: Network architecture of the conditional generative model.

better demonstrate the positive correlation between the con-
sistency loss and the 3D reconstruction error, we trained a
highly diverse conditional generative model on multi-view
images. Specifically, we applied diversity constraint on the
whole concatenated point clouds at the second stage of the
training. We used α = 15.0 and β = 0.5 in this experi-
ment. Similar to the main experiment, we trained the model
for 40,000 iterations using Adam with an initial learning
rate 1e-4.

From the Table 6 in the main paper we can infer the pos-
itive correlation between the consistency loss and CD at in-
ference stage. Moreover, it is shown that applying the di-
versity constraint to the single-view predicted point clouds
rather than the concatenated results gives much higher per-
formance (3.37 vs. 4.66 for CD).

C. More Ablation Studies
C.1. Ablation on number of input images

We conducted experiments with different number of in-
put views. We randomly sample n views and run inference
on both single and multiple categories. Results are shown
in Table 1. When we input only one view , the consistency
loss is unable to work, so the performance of the condi-
tional model is relatively poor. With more views observed,
the performance becomes consistently better.

C.2. Runtime analysis

We did not use any type of connectivity on the view-
based sampling layer. On 2048 (10k) points, our layer,
which takes 6.6ms (10.2ms) on average, is an O(n) ap-
proximation with 10.4% (3.6%) hidden parts included. The
accurate mesh-based sampling is at least O(nlgn) with a
large constant. Generating a triangle mesh from 2048 (10k)
points already takes 209.8ms (1.12s), which becomes the

speed bottleneck at both training and inference.
Note that in some cases the current system suffers from

the problem of empty faces. It could be due to that the cur-
rent view-based sampling is an approximation form which
might wrongly samples the points from the back part. This
will get the wrongly sampled points to be closer to the front,
resulting in unbalanced density. Developing efficient usage
of connectivity to better approximate the view-based sam-
pling process might help resolve this issue.

D. More Qualitative Results
In this section, we show more samples of qualitative re-

sults on single-view conditional predictions and multi-view
reconstruction.



Figure 2: Visualization on multiple predictions on single-view images.



Figure 3: Visualization on multi-view reconstruction with our proposed method.
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