

DIST: Rendering Deep Implicit Signed Distance Function with Differentiable Sphere Tracing

Shaohui Liu, Yinda Zhang, Songyou Peng, Boxin Shi, Marc Pollefeys, Zhaopeng Cui

Deep Implicit Signed Distance Functions (DeepSDF)

- Infinite-Resolution
- Lightweight

Voxel-based Representation [Tatarchenko *et al.*]

DeepSDF Representation [Park et al.]

No differentiable renderer for DeepSDF!

Park et al. "DeepSDF: Learning Continuous Signed Distance Functions for Shape Representation", In CVPR 2019.

Feedforward Rendering Results

Optimization over Shape Code

How to deal with non-differentiable rendered silhouette?

DIST Feedforward – Naive Sphere Tracing

Algorithm 1 Naive sphere tracing algorithm for a cameraray $L : \mathbf{c} + d\tilde{\mathbf{v}}$ over a signed distance fields $f : \mathbb{N}^3 \to \mathbb{R}$.1: Initialize $n = 0, d^{(0)} = 0, \mathbf{p}^{(0)} = \mathbf{c}$.2: while not converged do:3: Take the corresponding SDF value $b^{(n)} = f(\mathbf{p}^{(n)})$
of the location $\mathbf{p}^{(n)}$ and make update: $d^{(n+1)} = d^{(n)} + b^{(n)}$.4: $\mathbf{p}^{(n+1)} = \mathbf{c} + d^{(n+1)}\tilde{\mathbf{v}}, n = n + 1$.5: Check convergence.6: end while

For each camera ray, march along the ray direction at each step with the queried SDF value until convergence.

DIST Feedforward - Coarse-to-Fine Strategy

We start the sphere tracing over an image with ¼ resolution, and split each ray twice during the marching process, which saves computation at the early stage.

DIST Feedforward – Aggressive Marching

Setting step size $\alpha > 1$ incurs bouncing between both sides.

Setting step size $\alpha > 1$ speeds up convergence.

DIST Feedforward – Convergence Criteria

We stop the marching once the SDF value is smaller than $1/2 \epsilon$.

A large threshold ∈ causes dilation, while a small threshold leads to erosion.

DIST Feedforward – Results

parallel	+ dynamic	Method siz		#step	#query	time	
		Naive sphere tracing	512^{2}	50	N/A	N/A	
		+ practical grad.	512^{2}	50	6.06M	1.6h	
		+ parallel	512^{2}	50	6.06M	3.39s	
+ aggressive	+ coarse-to-fine	+ dynamic	512^{2}	50	1.99M	1.23s	
T uggressive	r course to fine	+ aggressive	512^{2}	50	1.43M	1.08s	
		+ coarse-to-fine	512^{2}	50	887K	0.99s	
		+ coarse-to-fine	512^{2}	100	898K	1.24s	
			•			•	

The computation becomes affordable while the results remain almost unchanged.

DIST Backward – Recursive Gradients

Each query location depends on the previous ones, incurring recursive gradients.

$$d = \alpha \sum_{n=0}^{N-1} f(\mathbf{p}^{(n)}) + (1-\alpha)f(\mathbf{p}^{(N-1)}) = d' + e$$

$$\begin{aligned} \frac{\partial d'}{\partial \mathbf{z}}|_{\mathbf{z}_{0}} &= \alpha \sum_{i=0}^{N-1} \frac{\partial f_{\theta}(\mathbf{p}^{(i)}(\mathbf{z}), \mathbf{z})}{\partial \mathbf{z}}|_{\mathbf{z}_{0}} \\ &= \alpha \sum_{i=0}^{N-1} \left(\frac{\partial f_{\theta}(\mathbf{p}^{(i)}(\mathbf{z}_{0}), \mathbf{z})}{\partial \mathbf{z}} + \frac{\partial f_{\theta}(\mathbf{p}^{(i)}(\mathbf{z}), \mathbf{z}_{0})}{\partial \mathbf{p}^{(i)}(\mathbf{z})} \frac{\partial \mathbf{p}^{(i)}(\mathbf{z}_{0})}{\partial \mathbf{z}} \end{aligned}$$

This term is omitted as it empirically has less impact on the optimization process.

DIST Backward – Differentiable Silhouette

Optimization over Camera Parameters

Given a fixed shape, our differentiable renderer can successfully backpropagate gradients to the camera parameters with respect to 2D observations.

Results - Reconstruction from Sparse Depth Images

	dense	50%	10%	100pts	50pts	20pts					
sofa											
DeepSDF	5.37	5.56	5.50	5.93	6.03	7.63					
Ours	4.12	5.75	5.49	5.72	5.57	6.95					
Ours (mask)	4.12	3.98	4.31	3.98	4.30	4.94					
plane											
DeepSDF	3.71	3.73	4.29	4.44	4.40	5.39					
Ours	2.18	4.08	4.81	4.44	4.51	5.30					
Ours (mask)	2.18	2.08	2.62	2.26	2.55	3.60					
table											
DeepSDF	12.93	12.78	11.67	12.87	13.76	15.77					
Ours	5.37	12.05	11.42	11.70	13.76	15.83					
Ours (mask)	5.37	5.15	5.16	5.26	6.33	7.62					

Results - Reconstruction from Video Sequences

Synthetic #1

Lin *et al.*

Ours

Real-world #1

Lin *et al.*

Ours

Synthetic #2

Lin *et al.*

Ours

Lin et al.

Real-world #2

Ours

Lin et al, "Photometric Mesh Optimization for Video-Aligned 3D Object Reconstruction", In CVPR 2019.

Code and Demo are available here

http://b1ueber2y.me/projects/DIST-Renderer/

Full-Resolution: http://blueber2y.me/projects/DIST-Renderer/pdf/4986-poster.pdf