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Abstract. Estimating the pose of a moving camera from monocular
video is a challenging problem, especially due to the presence of moving
objects in dynamic environments, where the performance of existing
camera pose estimation methods are susceptible to pixels that are not
geometrically consistent. To tackle this challenge, we present a robust
dense indirect structure-from-motion method for videos that is based on
dense correspondence initialized from pairwise optical flow. Our key idea
is to optimize long-range video correspondence as dense point trajectories
and use it to learn robust estimation of motion segmentation. A novel
neural network architecture is proposed for processing irregular point
trajectory data. Camera poses are then estimated and optimized with
global bundle adjustment over the portion of long-range point trajec-
tories that are classified as static. Experiments on MPI Sintel dataset
show that our system produces significantly more accurate camera tra-
jectories compared to existing state-of-the-art methods. In addition, our
method is able to retain reasonable accuracy of camera poses on fully
static scenes, which consistently outperforms strong state-of-the-art dense
correspondence based methods with end-to-end deep learning, demon-
strating the potential of dense indirect methods based on optical flow
and point trajectories. As the point trajectory representation is general,
we further present results and comparisons on in-the-wild monocular
videos with complex motion of dynamic objects. Code is available at
https://github.com/bytedance/particle-sfm.

Keywords: Structure-from-Motion, Motion Segmentation, Video Corre-
spondence, Visual Reconstruction

1 Introduction

Localizing moving cameras from monocular videos is a fundamental task in a
variety of applications such as augmented reality and robotics. Many videos
exhibit complex foreground motion from humans, vehicles and general moving
objects, posing severe challenges for robust camera pose estimation. Traditional
indirect SfM methods [21, 35, 48] are built on top of feature point detectors
and descriptors. These methods rely on high-quality local features and perform
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Fig. 1. We present a dense indirect method that is able to recover reliable camera
trajectories from in-the-wild videos with complex object motion in dynamic scenes. (See
Fig. 6 for qualitative comparisons with COLMAP [63])

non-linear optimization over the geometric reprojection error. Conversely, direct
methods [19, 20, 49] track cameras by optimizing photometric error of the full
image assuming consistent appearance across views. While both types of methods
have produced compelling results, neither is robust against large object motion
in dynamic environments, which is however ubiquitous in daily videos.

To mitigate the influence of moving objects, several existing monocular SLAM
and SfM methods [5, 85, 89] attempt to focus on specific semantic classes of
objects that are likely to move around, e.g. humans and cars. However, there are
many general objects that can possibly move in the scene in practice (e.g. a chair
carried by a human). And moreover, those “special” objects such as humans
and cars are not necessarily moving in the videos, making these semantics-based
methods limited. Recent methods employ end-to-end deep learning to implicitly
deal with those complex motion patterns, placing focus on static parts with the
aid of training data. However, the end-to-end learning on camera poses brings
up limitation on the system generalization on in-the-wild daily videos.

We present a new dense indirect structure-from-motion system for videos that
explicitly tackles the issues brought by general moving objects. Our method is
based on dense correspondence initialized from pairwise optical flow. Inspired by
the success of Particle video [61], our method exploits long-range video correspon-
dence as dense point trajectories, which serves as an intermediate representation
and provides abundant information for estimating motion segmentation and
optimizing cross-view geometric consistency at global bundle adjustment.

Specifically, our method first connects and optimizes dense point trajectories
using pairwise dense correspondence from optical flow. Then, we propose a
specially designed network architecture to learn robust estimation of motion
labels from point trajectories with variable lengths. Finally, we apply global bundle
adjustment to estimate and optimize camera poses and maps over portions of each
point trajectory that are classified as static. Since the point trajectories are high-
level abstraction of the input monocular videos, training motion estimation solely
on synthetic datasets such as FlyingThings3D [45] exhibits great generalization
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ability and enables our system to produce robust camera trajectories on general
videos that contain complex and dense motion patterns (as shown in Fig. 1).

Experiments on MPI Sintel dataset [10] validate that our method significantly
improves over state-of-the-art SfM pipelines on localizing moving cameras in
dynamic scenes. In addition, on full static ScanNet dataset [13], our method is able
to retain reasonable accuracy on the predicted camera trajectories, consistently
outperforming strong dense correspondence based methods with end-to-end deep
learning, such as DROID-SLAM [72]. We further present results and comparisons
on in-the-wild monocular videos to demonstrate the improved robustness on
dealing with complex object motion in dynamic environments.

2 Related Work

Dense Correspondence in Videos: Cross-image correspondences are conven-
tionally built on local feature point detection and description [42, 60], and recent
methods employ deep neural networks to improve local features [15, 18] and
matching [62]. While the de-facto methods for localization and mapping operate
on sparse feature points, dense pixel correspondences [23,59,67] have shown great
potential especially on videos, thanks to the rapid developments of optical flow
predictors. Early methods such as SIFT-Flow [40] achieve dense correspondences
across different scenes, while recent advances [17,29,66] with deep learning regress
the optical flow through differentiable warping and feature cost volumes. One
notable recent work is RAFT [71] that introduces iterative recurrent refinement
with strong cross-dataset generalization. While these optical flow methods have
achieved remarkable performance on per-pixel accuracy, they intrinsically limit
the correspondences to image pairs rather than the whole video data. Conversely,
long-range video correspondence is early studied in Particle video [61] which first
employs point trajectories to represent motion patterns in videos. However, the
method is very computational expensive and practically not suitable for long
videos. Sundaram et al. [69] further propose a fast parallel implementation of
variational large displacement optical flow [9], and directly accumulate optical
flow to get dense point trajectories. Inspired by these pioneer works, we present a
method that sequentially tracks the optical flow and optimizes the pixel locations
by exploiting path consistency to acquire reliable dense point trajectories.

Motion Segmentation: Motion segmentation aims to predict what is move for
each image in a video sequence. Classical methods [65,75] estimate the motion
mask based on optical flow analysis, with follow-up works [8, 12] formulating
joint optimization over optical flow and motion segmentation. Recent methods
with deep neural networks [30, 73, 95] extract both appearance and optical
flow features with a specially designed two-branch networks, or exploit seman-
tic information [14] with optical flow based motion grouping. Self-supervised
methods [81, 86] are also proposed to overcome the requirement of labeling data.
To better parse the object motion, relative camera motion is estimated and
incorporated in [6, 7, 37,82]. However, these optical-flow based methods mostly
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suffer from temporal inconsistency and in-the-wild generalization to dynamic
videos with different shapes and textures. On the other hand, point trajectories
contain rich information for temporal object motion. There are a number of
existing works [22, 31, 38, 50, 51, 64] that cluster the tracked point trajectories
into motion segments with hand-crafted features and measurements. However,
all theses clustering-based methods rely on heavy optimization and hand-crafted
design, making them less scalable and general on in-the-wild video sequences.
In this work, we combine the best of both worlds and introduce a specially
designed network architecture for predicting trajectory attributes, specifically
motion labels from irregular data of dense point trajectories.

SfM and SLAM: Traditional methods on structure-from-motion can be generally
classified into indirect and direct methods. Indirect approaches [21,35,47,48,58,
63,79,88] rely on matched salient keypoints to determine geometric relationship
for multi-view images. Conversely, direct methods [2, 19,20,49,84] approximate
gradients over dense photometric registration on the full image. While both trends
of methods achieve great success in practice, they both suffer in dynamic scenes
due to the large number of pixel outliers. Most related to us, recent literature
attempts to exploits dense correspondences from optical flow. In particular, [57,94]
employ two-view geometric consistency check to detect moving objects, and
visual odometry systems are built by triangulating optical flow correspondences
in [90,94]. VOLDOR [46] employs a probabilistic graphical model over optical flow
to recover camera poses as hidden states. In TartanVO [76], optical flow is fed
into an end-to-end network to directly predict camera poses. R-CVD [36] jointly
optimizes depth and pose with flexible deformations and geometry-aware filtering.
DROID-SLAM [72] implicitly learns to exclude dynamic objects by training on
sythetic data with dynamic objects and employing deep bundle adjustment over
keyframes. While our method also benefits from dense correspondences from
pairwise optical flow, we do not employ end-to-end deep learning to encourage
better generalization. Instead, we explicitly model dense point trajectories and
perform bundle adjustment over these video correspondences.

Localizing Cameras in Dynamic Scenes: Localizing cameras in dynamic
scenes is challenging due to violation of rigid scene assumption in multi-view
geometry. Classical SfM and SLAM methods reject moving pixels as outliers
through robust cost function [35] and RANSAC [48, 63], yet consistently fail
under highly dynamic scenes with complex motion patterns. Beyond monocular
SLAM, effective segmentation and tracking of dynamic objects can be achieved [1,
4, 27,32,39,68,78] with auxiliary depth data from stereo, RGB-D and LiDAR,
which, however, is not generally available for in-the-wild captured videos. Thanks
to the rapid development of deep learning on visual recognition, many works [3,5,
85,89,93] tackle this problem by exploring the combination with object detection,
semantic and instance segmentation. However, These methods are often restricted
to pre-defined semantic classes. On the contrary, our method exploits the potential
of long-range point trajectories in videos for robust motion label estimation.
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Fig. 2. Overview of our proposed system for localizing moving cameras. Given an input
video, we first accumulate and optimize over pairwise optical flow to acquire high-quality
dense point trajectories. Then, a specially designed network architecture is employed to
process irregular point trajectory data to predict per-trajectory motion labels. Finally,
the optimized dense point trajectories along with the motion labels are exploited for
global bundle adjustment (BA) to optimize the final camera poses

3 Methods

The core idea of the proposed system is to exploit long-range video correspon-
dences as dense point trajectories throughout the pipeline. Figure 2 shows an
overview of the system. We first accumulate and optimize point trajectories
sequentially in a sliding-window manner from optical flow. Then, those point
trajectories are fed into the specially designed trajectory processing network to
predict per-trajectory motion labels. Finally, we estimate initial camera poses,
triangulate global maps from the portions of each trajectory that are classified
as static, and perform bundle adjustment over those point tracks to optimize
both camera poses and 3d points. As our method employs dense correspondence,
the maps built from our system are denser and more complete than top sparse
indirect methods such as COLMAP [63] with comparable running time needed.

3.1 Acquiring Dense Point Trajectories

We aim to acquire reliable point trajectories for motion estimation and global
bundle adjustment. Following the practice of early literature [61,69] that focus
on long-range video correspondence, we start from pairwise optical flow and
sequentially accumulate them into point trajectories. We use RAFT [71] as the
base optical flow predictor.

For accumulation of dense point trajectories, given the current pixel location
p0 on image 0 (sized H ×W ) and the optical flow F0→1 ∈ RH×W×2 from image
0 to image 1, the trajectory can be extended with: p1 = p0 + F0→1(p0). We
continue tracking point trajectories until the point suffers from occlusion, which
is determined by the forward-backward optical flow consistency check following
common practice [69, 87]. This forward-backward consistency check not only
deals with occlusion, but also filters out some erroneous optical flow, making
the trajectories more reliable. To maintain dense point trajectories, for each
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accumulation step we generate new trajectories on the area that is not occupied
by any trajectory on the current image. All trajectories are initialized at grid
points. Following [69], a sub-sampling factor λ is employed to control the density
of the trajectory by sub-sampling unoccupied pixels uniformly on 2D space, which
helps balance the computational cost and trajectory density if needed.

The resulting point trajectories are dense and roughly correct as video corre-
spondences. However, small errors from the optical flow accumulates across time,
incurring the tracked pixel locations to gradually drift away from the true ones.
Similar drifting errors often occur for tracking-based methods [33,91] for accumu-
lating sensor measurements. To fight against drifting, Particle video [61] attempts
to perform a heavy optimization on pixel locations directly using appearance
error on raw intensity images. Different from theirs, our method exploits path
consistency that benefits from optical flow from non-adjacent image pairs.

Specifically, given consecutive frames I0, I1, I2 and pairwise optical flows Fi→j

from Ii to Ij , we first initialize the point trajectory p1, p2 on I1 and I2 sequentially
with direct accumulation:

p′1 = p0 + F0→1(p0), p′2 = p′1 + F1→2(p
′
1). (1)

Then, we compute stride-2 optical flow F0→2 and optimizes p1 and p2 with
respect to the following objectives:

L = (p1 − p′1)
2+(p2 − (p0 + F0→2(p0)))

2

+ (p2 − (p1 + F1→2(p1)))
2

(2)

Gradients are numerically tractable with interpolation on the optical flow map
F1→2. Through the optimization we jointly adjust the pixel locations along
the track to encourage consistency. The framework is easily extended for longer
windows to exploit longer range of optical flow correspondences but we empirically
find that adding a single stride-2 constraints already consistently improves the
track quality by mitigating the drifting problem.

It is also worth noting that the success of path consistency formulation relies
on the key assumption that the direct pairwise measurements are relatively more
accurate than cumulative results when constructing point trajectories. This is
generally true for accumulating sensor measurements for visual odometry, while
in our case the assumption can be violated because if the pixel motion between
two images is too significant the accuracy of the pairwise optical flow will degrade.
Thus, it is relatively safe to keep a small window to avoid large degradation of
the long-range optical flow. In practice, if F0→2 does not pass forward-backward
consistency check, we skip the optimization at the timestamp and keep the
initial accumulated positions. The point trajectory is sequentially extended and
optimized until occlusion is detected.

3.2 Trajectory-based Motion Segmentation

Moving objects, while being ubiquitous in daily videos, pose severe challenges
for camera pose estimation as it violates geometric consistency across different
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Fig. 3. Illustration of the trajectory-based motion segmentation network. To pro-
cess irregular point trajectory data, we first employ a transformer-based encoder to
extract features for each trajectory. Then, all trajectory features are considered as
high-dimensional point cloud and fed into an OANet-based [92] decoder to predict
per-trajectory motion labels. In practice, we split long-range point trajectories into
segments and map the predicted motion labels for each segment back onto the pixels

timestamps, making it crucial to design strategies to filter out dynamic objects.
One trend of commonly-used methods in dynamic SLAMs [5,85,89] is to utilize
semantic segmentation model, e.g. Mask-RCNN [25] to get per-pixel semantic
masks, and remove all potentially moving pixels according to its semantic labels,
such as person, car, dog, etc. While these methods are effective under certain
scenarios, they are intrinsically not general for segmenting moving objects, since it
completely relies on pre-defined semantic classes and cannot distinguish moving
or static objects within the same semantic category (e.g. moving and static
cars). Conversely, another alternative is to use two-frame motion segmentation
methods [73,95], which are recently powered with various convolutional neural
network (CNN) models. These methods provide true motion labels instead of
semantic candidates. However, two-frame based CNN models suffer from severe
temporal inconsistency, degraded estimation when input flows are noisy, and
exhibit limited out-of-domain generalization on in-the-wild videos.

We propose to exploit the dense point trajectories we acquired for estimating
motion labels. Trajectory-based methods are generally more robust and consis-
tent compared to two-frame flow models for motion segmentation. Unfortunately,
traditional cluster-based trajectory segmentation methods rely on heavy opti-
mization and hand-crafted features, and are hard to scale with dense trajectories.
To deal with such issues, we propose a novel neural network for processing
trajectory data for prediction, which enables fast, robust and accurate dense
point trajectory based motion segmentation. As shown in Fig. 3, our proposed
network employs a encoder-decoder architecture. Specifically, the encoder directly
consumes irregular trajectory data and embeds into high-dimensional feature
space. Then, all the encoded trajectories are together fed into the decoder, which
performs context-aware feature aggregations among trajectories to fuse both
local and global information and finally regress the motion label.

As each trajectory has different start time, end time and length, the point
trajectory data is highly irregular and hard to be directly processed with regular
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convolutional neural networks. Inspired by sequence modeling in natural language
processing where language sequences are also irregular, we utilize the powerful
transformer [74] model to extract features from trajectories. Built up with multi-
head attention, transformer can effectively process sequential data, and is broadly
used in language model, and recently extended to vision tasks [16]. Our input
data for transformer encoder is N trajectories, and each trajectory includes a set
of normalized pixel coordinates (ui, vi). We first cut and pad all the trajectories
to the temporal window size L. After that, all trajectories have the shape of (L, 2)
with masks indicating where the pixel coordinates are zero-padded. To better
exploit motion information, we augment the trajectory data {(ui, vi), i ∈ [0, L)}
with consecutive motion (∆ui, ∆vi) = (ui+1−ui, vi+1−vi). Furthermore, since the
moving objects are much easier to be classified in 3d space, we integrate relative
depth information from MiDaS [56] to disambiguate the motion segmentation
from pure 2d pixel movements. The estimated relative depth is normalized to (0, 1)
and used to back-project the 2d pixels into 3d camera coordinates (xi, yi, zi). We
also include the 3d motion data (∆xi, ∆yi, ∆zi) = (xi+1−xi, yi+1− yi, zi+1− zi)
for the trajectory input. The final augmented trajectories have the shape of (L, 10).
This data is then embedded by two MLPs, resulting in intermediate features with
shape (L,C), which is fed into the transformer module. The transformer consists
of 4 blocks, each with multi-head attention and feed-forward layers to encode the
temporal information of each trajectory. The output of the transformer module
is encoded features also with shape (L,C). To get feature representation of the
whole trajectory instead of each point, we further perform max-pooling over
temporal dimension, resulting in (1, C) feature vector for each trajectory.

To segment a trajectory as moving objects or static background, the model
not only needs to extract motion pattern from each trajectory data, but also has
to communicate and compare with other trajectories before making decisions,
which is achieved by the decoder. All encoded trajectory features with shape
(N,C) naturally forms a feature cloud in high-dimensional space. Thus, we build
the decoder on top of carefully designed point cloud processing architectures.

Specifically, we choose OANet [92] as our backbone to benefit from its efficiency
and well-designed local-global context mechanism. To capture the local feature
context, the network first clusters input points by learning a soft assignment
matrix (Diff Pool in Figure 3). Then, the clusters are spatially correlated to
explore the global feature context. Next, the detailed context features of each
point are recovered from embedded clusters through differentiable unpooling.
And finally, several PointCN layers are applied, followed by sigmoid activation
to get the binary prediction mask. We refer the reader to [92] for more details
about differentiable pooling, unpooling and PointCN layer.

Our proposed trajectory motion segmentation network is fast, robust and
general. It could process tens of thousands trajectories within a few seconds. By
only trained on synthetic dataset FlyingThings3D [45], the network generalizes
well across various scenarios including indoor, outdoor, synthetic movies and
daily videos. Furthermore, the proposed network can also be easily extended to
predict other trajectory attributes that benefit video understanding.
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3.3 Global Bundle Adjustment over Point Trajectories

The optimized dense point trajectories along with the predicted motion labels can
be jointly used for localizing moving cameras for monocular videos. Specifically,
given a video sequence, we first accumulate and optimize optical flow to get
long-range point trajectories. Then, the trajectory motion segmentation network
predicts trajectory motion labels in a sliding-window manner with window size
L. These motion labels are mapped back onto each pixel to get final per-point
motion segmentation. In the map construction and global bundle adjustment we
only consider the portions of each trajectory that have static labels.

Since we have dense video correspondences, we can directly formulate non-
linear geometric optimization over the point tracks. Inspired by [70,79], we build
a global SfM pipeline with dense point trajectories. Specifically, relative camera
poses for neighboring views are first solved [24] with sampled correspondences
from pairs of static pixels from the point trajectories with its motion labels.
Then, rotation averaging [11] and translation averaging [52] are performed to get
the initial camera pose estimations. Finally, global bundle adjustment is applied
over the constructed point tracks at triangulation stage. Note that the point
tracks are consistent with the original dense point trajectories since it comes from
dense correspondences sampled from it. Thus, we achieve final pose refinement by
making use of the static pixels along the trajectories without considering outlier
pixels that are classified as parts of moving objects. As the trajectory processing
network is well generalized, our method can recover reliable camera trajectories
on in-the-wild daily videos with complex foreground motion.

4 Experiments

4.1 Implementation Details

We use the pre-trained RAFT [71] model on FlyingThings3D dataset [9]. The
sub-sampling factor λ of point trajectory is set to 2 for all the experiments to
balance the reconstruction density and computation time. For trajectory motion
segmentation network, we use 4 heads for multi-head attention and 64 dimension
for feed-forward layer. As for OANet, we set the cluster number to 100 and
the layer number to 8. We train the proposed network on the training split of
FlyingThings3D dataset [45]. We implement the network in PyTorch [53] and
train it using Adam optimizer [34] with learning rate 1e-4 for 30 epochs. At
inference, we use a window size L of 10 by default.

We test our system on Sintel [10], ScanNet [13], and in the wild video sequences
from DAVIS [54]. For ScanNet dataset, we evaluate our method on the first 20
scenes in the test split. Since the whole video sequence is very long and not
suitable for evaluating time-consuming offline methods like COLMAP [63], we
only take the first 1500 frames and down-sample with stride 3 for each scene,
resulting in a roughly 10 FPS video. Since all the methods use monocular video
as input, we first scale and align all the output camera trajectories with respect to
groundtruth, and then calculate commonly used pose metrics: RMSE of absolute
trajectory error, translation and rotation part of relative pose error.
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Sample frames Tartan-VO [76] DROID-SLAM [72] COLMAP [63] Ours

Fig. 4. Qualitative results of moving camera localization on MPI Sintel dataset [10]

Table 1. Quantitative evaluation on MPI Sintel dataset [10]. COLMAP [63] is addi-
tionally compared on its successful subset. Metrics are averaged across sequences

Methods ATE (m) RPE trans (m) RPE rot (deg)

COLMAP [63] 0.145 0.035 0.550
COLMAP MAT [95] + [63] 0.069 0.024 0.726

subset Mask-RCNN [25] + [63] 0.109 0.039 0.605
Ours 0.019 0.005 0.124

COLMAP [63] X X X
R-CVD [36] 0.360 0.154 3.443

Full set Tartan-VO [76] 0.290 0.092 1.303
DROID-SLAM [72] 0.175 0.084 1.912
Ours 0.129 0.031 0.535

4.2 Evaluation on MPI Sintel dataset

MPI Sintel dataset [10] contains 23 synthetic sequences of highly dynamic scenes.
We remove sequences that are not valid to evaluate monocular camera pose (e.g.
static cameras, perfectly straight line), resulting in a total of 14 sequences for
comparison. We compare our system with both feature based indirect SfM method
COLMAP [63] and state-of-the-art deep learning methods [36,72,76]. The results
are summarized in Table 1. We also provide comparisons with representative
SLAM methods ORB-SLAM [48] and DynaSLAM [5] in the supplementary
materials. Since COLMAP fails in 5 of 14 sequences, we perform comparison on
the subset of other 9 sequences. Furthermore, we set up baselines by extracting
motion masks from state-of-the-art methods MAT [95] and Mask-RCNN [25] to
augment COLMAP [63], where no feature points are extracted in the dynamic
region. For Mask-RCNN [25], all the pixels that belong to potentially dynamic
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Sample frame Tartan-VO [76] DROID-SLAM [72] COLMAP [63] Ours

Fig. 5. Qualitative results of moving camera localization on ScanNet dataset [13]

objects (person, vehicle, animals) are considered dynamic. As shown in Table 1,
while explicit motion removal improves the perforamance, our method outperforms
compared baselines by a largin margin thanks to the advantages of long-range
point trajectories. For learning-based methods, Tartan-VO [76] and DROID-
SLAM [72] are both trained on large-scale dataset TartanAir [77] and have
demonstrated strong generalization ability across different datasets. However,
they struggle on dynamic scenes and fail to predict reliable camera trajectories.
Some qualitative examples are shown in Figure 4, where our system produces
accurate camera poses over highly dynamic sequences.

4.3 Evaluation on ScanNet

Table 2. Quantitative evaluation on ScanNet [13]. COLMAP [63] is additionally
compared on its successful subset. Metrics are averaged across sequences

Methods ATE (m) RPE trans (m) RPE rot (deg)

COLMAP COLMAP [63] 0.171 0.064 2.900
subset Ours 0.319 0.017 0.632

COLMAP [63] X X X
R-CVD [36] 0.468 0.065 7.626

Full set Tartan-VO [76] 0.353 0.045 2.620
DROID-SLAM [72] 0.687 0.038 3.117
Ours 0.349 0.024 0.924

To study the generalization of the proposed dense indirect SfM system,
we further test our method on fully static indoor dataset ScanNet [13]. Some
sequences in ScanNet contain inf values in groundtruth poses and we exclude them
from evaluation, resulting in out of 20 test sequences. The results are shown in
Table 2. Our method consistently improve dense baselines and provide reasonable
camera trajectories with complex camera motions, as shown in Figure 5. As for
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Fig. 6. Top row: COLMAP [63]. Bottom row: Ours. Qualitative comparison on
in-the-wild videos from DAVIS [54]. Our dense indirect system produces robust camera
trajectory and denser maps for videos with complex foreground motion

feature based method, COLMAP fails in 3 sequences out of 17, while our dense
indirect system succeeds on all 17 sequences. We further present comparisons on
the successful subset of COLMAP. Our method is slightly behind on ATE, but
better on RPEs. This is possibly due to the degraded quality of indoor optical
flow and the missing loop closure in our global bundle adjustment.

4.4 Qualitative evaluation on in-the-wild videos

As our system is general, we further present results and comparisons with
COLMAP [63] on in-the-wild monocular videos with complex motion of dynamic
objects in Figure 6. Videos are taken from DAVIS [54]. While COLMAP sometimes
fails to predict reasonable camera poses (see the first and second sample of
Figure 6), our method generalizes well in the wild, and is more robust to dynamic
objects. Furthermore, our dense indirect solution is able to build significantly
denser 3d reconstructions, which demonstrates the potential of indirect methods
for recovering fine-grained 3D geometry.

4.5 Ablation Study

We ablate different components of our system on MPI Sintel dataset [10]. Table
3 shows the results. Without trajectory motion segmentation, all candidate corre-
spondences, including those on moving objects, are used for map construction and
global bundle adjustment. Results show that this leads to significantly degraded
accuracy of recovered poses, indicating the important of removing dynamic pix-
els. Moreover, by optimizing point trajectories with path consistency, the mean
endpoint error of trajectories is reduced by around 10%, which consequently
improves camera localization (the last two rows). To further validate the necessity
of dense point trajectories, we introduce two feature-based baselines that are built
on SIFT [42], where one is also integrated with MAT [95] for removing moving
pixels. As shown in Table 3, these two methods sometimes fail on sequences, and
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Table 3. Results of ablation studies on MPI Sintel dataset [10]. We report metrics for
all methods on both the full set (left) and the successful subset for SIFT + Global BA
(right). “Optim” denotes trajectory optimization and “Seg” denotes trajectory-based
motion segmentation and its use for global bundle adjustment

Methods ATE (m) RPE trans (m) RPE rot (deg)

SIFT + Global BA X / 0.060 X / 0.042 X / 0.635
SIFT + MAT [95] + Global BA X / 0.054 X / 0.055 X / 0.621
Traj + Global BA X / 0.071 X / 0.041 X / 0.969
Traj + Optim + Global BA X / 0.072 X / 0.042 X / 0.929
Traj + Seg + Global BA 0.146 / 0.046 0.039 / 0.015 0.567 / 0.212
Traj + Optim + Seg + Global BA 0.129 / 0.042 0.031 / 0.013 0.535 / 0.199

Fig. 7. Qualitative results on motion segmentation. From top to bottom: sample
image, Mask-RCNN [25], MAT [95] and our trajectory-based motion segmentation

are behind on accuracy when tested on their successful subset compared to our
system, demonstrating the effectiveness of dense point trajectories.

To study the effects of different components in the trajectory motion seg-
mentation network, we perform ablation studies on MPI Sintel dataset [10] by
evaluating segmentation w.r.t groundtruth motion masks. Since trajectory motion
segmentation methods only offer predictions for trajectories, we map the motion
labels into corresponding pixel locations and evaluate all methods only on these
pixels. Table 4 shows the results. We compare our method with state-of-the-
art supervised motion segmentation method [95] that is trained on DAVIS [54]
and YouTube-VOS [80]. Our method, while only trained on synthetic FlyingTh-
ings3D dataset [45], achieves better motion segmentation even without depth
information. Figure 7 shows some qualitative results, where our method predicts
reliable motion masks for moving pixels. To further support the novel design
of the network, we introduce a baseline that utilize two-branch CNN networks
with ResNet-50 [26] to aggregate motion, appearance, and optionally also depth
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Table 4. Evaluation and ablation studies for motion segmentation on MPI Sintel
dataset [10]. We compare our method with several state-of-the-arts and ablate different
components in our design on trajectory-based motion segmentation

Methods mIoU (%) Precision Recall F1-score

MAT [95] 47.5 0.82 0.54 0.56
COS [43] 55.0 0.67 0.77 0.65
MotionGrouping [81] 16.2 0.64 0.19 0.25
AMD [41] 31.5 0.42 0.62 0.45

Two-branch CNN w/o depth 29.2 0.54 0.49 0.39
Two-branch CNN 33.7 0.62 0.50 0.44
Ours with MLP encoder 54.8 0.67 0.73 0.66
Ours with PointNet decoder 46.3 0.65 0.67 0.58
Ours w/o depth 54.6 0.72 0.70 0.65

Ours 60.6 0.79 0.74 0.72

information. However, results indicate that this two-branch network exhibits low
generalization ability when trained on FlyingThings3D dataset. Finally, we also
ablate the architecture design by substituting the encoder with vanilla MLPs
and the decoder with PointNet [55]. Results clearly show the advantages of using
attention-based encoder and local-global context-aware decoder in our system.

Runtime analysis. For a 50-frame video, our system runs within 690s on average,
including all the I/O time of each module. Specifically, optical flow extraction
takes around 57s, the acquisition of dense point trajectories takes 200s, the
trajectory motion segmentation takes around 65s, and the final global BA takes
368s. For comparison, COLMAP [63] takes 410s on average. Note that it is
computationally unaffordable to run COLMAP with dense correspondences
from the acquired dense point trajectories, while our method achieves dense
correspondence with reasonable overhead.

5 Conclusions

In this work, we present a general dense indirect system for localizing moving
cameras from in-the-wild videos. The key to the success of our method is to
optimize and exploit long-range dense video correspondences as point trajectories,
which are used for motion analysis and global bundle adjustment. A specially
designed trajectory-based motion segmentation network is proposed to process
the irregular point trajectory data. Experimental results show that our method
can recover reliable camera trajectories from in-the-wild videos with complex
motion patterns. Possible future directions include advanced optimization for
long-range point trajectories and integration of loop closure for pose optimization.
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A More Implementation Details

Point Trajectory. We use the pretrained raft-things model for RAFT [71] in all
our experiments. It is trained on FlyingChairs and FlyingThings3D [45]. For
optical flow forward-backward consistency check, we use the threshold of 1px for
MPI Sintel dataset [10], and 3px for ScanNet dataset [13].

Motion Segmentation. For training trajectory motion segmentation network, we
first prepare the trajectory data of FlyingThings3D dataset [45]. The dataset
consists of over 2000 training scenes, and each scene contains 10 video frames,
together with groundtruth optical flow, camera parameters and depth maps. We
run our dense point trajectory generation algorithm to track trajectories from
groundtruth optical flows, and then calculate trajectory groundtruth motion
labels by comparing optical flow with rigid flow from depths and camera poses.
We infer the relative depth information by pretrained MiDaS [56] model. For all
experiments, we use the pretrained midas-v21 model. During training, we directly
take all the point trajectories from 10 video frames and output the per-trajectory
motion label. Weighted binary cross-entropy loss is then applied.

Global Bundle Adjustment (BA). The implementation of our pipeline is mainly
based on the Theia SfM system [70]. With the dense correspondences sampled
from the point trajectories, we first compute two-view geometry [24] between
valid image pairs and decompose the relative poses. In particular, the view pairs
with very few or extremely noisy correspondences are detected with geometric
verification [63] and ignored in the subsequent stages. Then, L1-IRLS rotation
averaging [11] is applied to estimate the global orientations from the relative
rotations among those valid pairs. After filtering outlier pairs with large errors
on the relative rotations, we solve for the relative translations with the global
rotations and apply LUD translation averaging [52] to get global translations.
With these initial global poses, we incrementally triangulate 2D observations as
in [63] and perform bundle adjustment on all the poses and 3D points to get the
final output camera poses. Note that since we triangulate over the correspondences
directly sampled from the dense point trajectories, each constraint in the bundle
adjustment exactly corresponds to a part of the original point trajectory with
geometric filtering, enabling effective global bundle adjustment over the input
trajectory observations.

B Comparisons with SLAM methods

We provide the quantitative comparison results on Sintel dataset with rep-
resentative monocular SLAM methods ORB-SLAM [48] and DynaSLAM [5].
ORB-SLAM [48] is the most popular feature-based monocular SLAM method
which utilizes robust front-end tracking and local bundle-adjustment to achieve
accurate camera localization. Built on top of ORB-SLAM, DynaSLAM [5] fur-
ther introduces semantics to remove potentially dynamic objects to improve the
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robustness. Since ORB-SLAM and DynaSLAM only provide key-frame poses, we
compared the localization accuracy solely on their key-frames. For Sintel dataset,
both ORB-SLAM and DynaSLAM consistently fail in 8 of 14 sequences,
and we summarize the results from other 6 successful sequences in Table 5. Our
method surpasses both of them by a large margin even on their successful subset.
Furthermore, ORB-SLAM and DynaSLAM fail on all 17 ScanNet sequences,
probably due to large motion blur and poorly textured regions, while our method
consistently provides reasonable camera poses.

Table 5. Evaluation on the successful subset (6 out of 14 sequences) of ORB-SLAM /
DynaSLAM on MPI Sintel dataset.

Methods ATE (m) RPE trans (m) RPE rot (deg)

ORB-SLAM 0.042 0.022 0.402
Ours 0.009 0.006 0.101

DynaSLAM 0.020 0.019 0.359
Ours 0.007 0.005 0.090

C Per-scene Results on MPI Sintel and ScanNet

We show the per-scene comparison results of MPI Sintel [10] and ScanNet [13]
dataset in Table 6 and Table 7. For MPI Sintel, our method achieves the best
performance on most sequences, demonstrating the advantage of the proposed
system in dynamic scenarios. For fully static indoor dataset ScanNet, our method
retain comparable performance with COLMAP [63], slightly behind on ATE
and better on RPEs. COLMAP globally matches the feature points between
image pairs, thus naturally has the ability of loop closure, while our method lacks
as point trajectories are accumulated sequentially. Although our method could
achieve good relative pose estimations, the trajectory error will be accumulated
without loop closure. This is possibly the main reason why our method is worse
than COLMAP in ATE but better in RPEs. In the future, we aim to implement
the loop closure inside our system by matching trajectories across frames.

D Additional Visualization

We show more visualizations about trajectory motion segmentation and camera
localization in Figure 8. Sequences are from 3DPW [44], Youtube-VOS [80], GOT-
10K [28] and BANMO [83] dataset. See the attached video for better experience.
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Table 6. Per-scene results on MPI Sintel dataset [10].

Metrics COLMAP [63] MAT [95] + [63] Mask-RCNN [25] + [63] R-CVD [36] Tartan-VO [76] DROID-SLAM [72] Ours

3*alley 2 ATE (m) 0.072 0.002 0.072 0.026 0.062 0.057 0.002
RPE trans (m) 0.039 0.0009 0.038 0.056 0.049 0.035 0.0007
RPE rot (deg) 0.678 0.014 0.679 0.821 0.856 1.047 0.009

3*ambush 4 ATE (m) 0.030 0.174 0.029 0.171 0.100 0.104 0.068
RPE trans (m) 0.032 0.046 0.045 0.048 0.038 0.035 0.027
RPE rot (deg) 0.377 3.425 0.541 3.025 1.320 1.385 0.473

3*ambush 5 ATE (m) 0.028 0.090 0.004 0.230 0.098 0.112 0.002
RPE trans (m) 0.015 0.036 0.005 0.046 0.037 0.029 0.001
RPE rot (deg) 0.607 0.817 0.204 4.105 1.107 1.580 0.055

3*ambush 6 ATE (m) X X X 0.199 0.205 0.289 0.269
RPE trans (m) X X X 0.112 0.107 0.078 0.081
RPE rot (deg) X X X 4.147 4.293 4.596 0.951

3*cave 2 ATE (m) X X X 0.596 1.167 0.351 0.961
RPE trans (m) X X X 0.171 0.131 0.172 0.142
RPE rot (deg) X X X 7.508 4.112 5.489 3.678

3*cave 4 ATE (m) 0.051 0.049 0.044 0.179 0.120 0.155 0.068
RPE trans (m) 0.013 0.028 0.040 0.087 0.039 0.035 0.012
RPE rot (deg) 0.451 0.700 0.600 2.040 1.327 2.710 0.409

3*market 2 ATE (m) X X X 0.032 0.068 0.011 0.003
RPE trans (m) X X X 0.018 0.007 0.006 0.010
RPE rot (deg) X X X 0.141 0.090 0.036 0.041

3*market 5 ATE (m) 1.105 0.284 0.816 1.213 1.158 0.912 0.012
RPE trans (m) 0.210 0.095 0.212 0.762 0.294 0.293 0.006
RPE rot (deg) 2.232 0.055 2.380 1.863 1.100 3.334 0.034

3*market 6 ATE (m) X X X 0.248 0.260 0.057 0.018
RPE trans (m) X X X 0.214 0.110 0.037 0.007
RPE rot (deg) X X X 0.817 1.287 1.296 0.120

3*shaman 3 ATE (m) 0.012 0.006 0.009 0.054 0.008 0.001 0.0005
RPE trans (m) 0.003 0.005 0.007 0.023 0.006 0.002 0.0004
RPE rot (deg) 0.537 0.978 0.977 0.718 0.185 0.199 0.072

3*sleeping 1 ATE (m) 0.008 0.013 0.008 0.029 0.017 0.011 0.008
RPE trans (m) 0.001 0.006 0.001 0.019 0.011 0.006 0.001
RPE rot (deg) 0.053 0.530 0.046 0.668 0.344 0.479 0.042

3*sleeping 2 ATE (m) 0.0002 0.0002 0.0002 0.043 0.013 0.005 0.0007
RPE trans (m) 0.0002 0.0002 0.0002 0.049 0.022 0.0177 0.0002
RPE rot (deg) 0.008 0.006 0.007 0.446 0.267 0.139 0.006

3*temple 2 ATE (m) 0.004 0.006 0.006 1.245 0.447 0.073 0.011
RPE trans (m) 0.003 0.002 0.002 0.394 0.324 0.348 0.002
RPE rot (deg) 0.012 0.007 0.013 1.318 0.789 1.298 0.019

3*temple 3 ATE (m) X X X 0.769 0.331 0.310 0.381
RPE trans (m) X X X 0.161 0.105 0.093 0.149
RPE rot (deg) X X X 20.592 1.166 3.230 1.583



18 W. Zhao et al.

Table 7. Per-scene results on ScanNet dataset [13].

Metrics COLMAP [63] R-CVD [36] Tartan-VO [76] DROID-SLAM [72] Ours

3*scene0707 00 ATE (m) 0.147 0.442 0.418 0.978 0.199
RPE trans (m) 0.059 0.092 0.065 0.043 0.020
RPE rot (deg) 0.803 7.301 2.914 3.530 0.574

3*scene0709 00 ATE (m) 0.143 0.437 0.202 0.872 0.220
RPE trans (m) 0.067 0.088 0.063 0.052 0.015
RPE rot (deg) 0.780 6.852 2.698 3.187 0.523

3*scene0710 00 ATE (m) 0.073 0.429 0.306 0.631 0.247
RPE trans (m) 0.016 0.039 0.027 0.030 0.012
RPE rot (deg) 0.371 4.412 1.961 2.153 0.424

3*scene0712 00 ATE (m) 0.051 0.183 0.514 0.639 0.232
RPE trans (m) 0.016 0.021 0.025 0.017 0.016
RPE rot (deg) 0.383 3.807 1.943 2.221 0.619

3*scene0713 00 ATE (m) 0.204 0.472 0.515 0.616 0.309
RPE trans (m) 0.124 0.090 0.047 0.047 0.024
RPE rot (deg) 9.536 18.216 3.437 4.127 1.287

3*scene0714 00 ATE (m) 0.891 0.644 0.389 0.916 0.372
RPE trans (m) 0.215 0.075 0.064 0.045 0.019
RPE rot (deg) 9.190 7.498 2.630 3.485 0.418

3*scene0715 00 ATE (m) 0.267 0.230 0.239 0.511 0.341
RPE trans (m) 0.156 0.039 0.049 0.039 0.026
RPE rot (deg) 15.059 8.835 2.930 3.524 0.611

3*scene0717 00 ATE (m) 0.091 0.324 0.508 0.782 0.252
RPE trans (m) 0.040 0.050 0.058 0.040 0.022
RPE rot (deg) 0.586 7.267 3.006 3.453 0.555

3*scene0718 00 ATE (m) X 0.350 0.111 0.385 0.295
RPE trans (m) X 0.080 0.065 0.066 0.039
RPE rot (deg) X 12.460 3.837 5.189 0.844

3*scene0719 00 ATE (m) 0.051 0.373 0.171 0.657 0.268
RPE trans (m) 0.019 0.041 0.044 0.031 0.012
RPE rot (deg) 0.330 6.919 2.423 3.380 0.401

3*scene0720 00 ATE (m) 0.133 0.390 0.331 0.389 0.815
RPE trans (m) 0.040 0.034 0.030 0.027 0.021
RPE rot (deg) 0.900 0.668 2.002 1.915 0.875

3*scene0721 00 ATE (m) X 0.521 0.259 1.345 0.625
RPE trans (m) X 0.054 0.042 0.070 0.110
RPE rot (deg) X 6.439 2.022 2.260 5.304

3*scene0722 00 ATE (m) 0.050 0.427 0.319 0.486 0.467
RPE trans (m) 0.027 0.041 0.042 0.031 0.019
RPE rot (deg) 0.444 8.193 2.943 3.523 0.489

3*scene0723 00 ATE (m) 0.139 0.766 0.483 0.521 0.220
RPE trans (m) 0.031 0.079 0.036 0.028 0.015
RPE rot (deg) 0.796 5.675 2.201 2.304 0.603

3*scene0724 00 ATE (m) 0.062 0.647 0.429 0.702 0.332
RPE trans (m) 0.040 0.090 0.036 0.027 0.013
RPE rot (deg) 0.854 5.857 2.796 3.218 1.022

3*scene0725 00 ATE (m) X 0.714 0.550 0.882 0.548
RPE trans (m) X 0.075 0.036 0.027 0.013
RPE rot (deg) X 9.665 2.272 2.612 0.708

3*scene0726 00 ATE (m) 0.100 0.474 0.258 0.380 0.193
RPE trans (m) 0.051 0.055 0.043 0.035 0.011
RPE rot (deg) 0.563 6.567 2.524 2.904 0.458
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Fig. 8. Visualization of trajectory motion segmentation and camera localization of
in-the-wild videos. Moving pixels from point trajectories are colored in green
and static background pixels are in blue. Free space with no colored pixels
indicates that there are no trajectory points due to occlusion or large flow
forward-backward consistency error.
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