3D Line Mapping Revisited

THU-PM-080
Shaohui Liu, Yifan Yu, Rémi Pautrat, Marc Pollefeys, Viktor Larsson

Microsoft

Robust Scalable Pipeline for Mapping 3D Lines

Examples of Our 3D Line Maps

Opening up new possibilities to multiple applications

Example: Hybrid Localization

before optimization
after optimization

Dataset	HLoc*	PtLine	Ours
Cambridge	$7.0 / 0.13 / 44.0$	$7.4 / 0.13 / 43.5$	$\mathbf{6 . 7} / \mathbf{0 . 1 2} / \mathbf{4 6 . 1}$
7Scenes	$3.3 / 1.08 / 73.0$	$3.3 / 1.09 / 72.7$	$\mathbf{3 . 0} / \mathbf{1 . 0 0} / \mathbf{7 8 . 0}$
Dataset	HLoc* w/ Depth	PtLine	Ours w/ Depth
7Scenes w/ depth	$2.9 / 0.94 / 80.1$	$2.8 / 0.93 / 80.6$	$\mathbf{2 . 6} / \mathbf{0 . 8 7} / \mathbf{8 3 . 5}$

point-alone localization
hybrid point-line localization

	(T / R) err. \downarrow	Acc. \uparrow
HLoc*	$5.2 / 1.46$	46.8
HLoc* w/ depth	$4.7 / 1.25$	53.4
PtLine	$4.8 / 1.33$	51.9
Ours w/L3D++	$4.1 / 1.14$	60.8
Ours w/ LIMAP	$\mathbf{3 . 7} / \mathbf{1 . 0 2}$	$\mathbf{7 1 . 1}$

Example: Hybrid Bundle Adjustment

	Med. error \downarrow	AUC @ $\left(1^{\circ} / 3^{\circ} / 5^{\circ}\right) \uparrow$
COLMAP	0.188	$77.3 / 89.0 / 91.6$
COLMAP + LIMAP refinement	$\mathbf{0 . 1 4 6}$	$\mathbf{8 2 . 9 / 9 1 . 2 / 9 3 . 0}$

Open-sourcing - LIMAP: a toolbox for mapping and localization with line features

Snavely et al. Bundler (2010)

COLMAP

Schönberger et al. COLMAP (2016)

Modern multi-view geometry software heavily rely on feature points.

What is missing from the 3D point map?

SuperPoint + COLMAP point triangulator

Line Mapping

Point-line Association

Parallelism \& Orthogonality

Von Gioi et al. LSD: A fast line segment detector with a false detection control (2010)

Zhou et al. LCNN (2019)

Pautrat et al. SOLD2 (2021)

Challenges on mapping lines

- Inconsistent endpoints
- Line Fragmentation
- No Two-view Geometric Verification
- Weak matchers
- Degenerate Configurations
\qquad

Challenges on mapping lines

- Inconsistent endpoints
- Line Fragmentation
- No Two-view Geometric Verification
- Weak matchers
- Degenerate Configurations
- \qquad

Algebraic Line triangulation

Ray-plane intersection on both endpoints respectively
Degeneracy happens when ray lies on the plane! 0 / 1 / 2 degenerate endpoints

Blue - degree 1
red - degree 2
black degree >= 3

0 degree - isolated point

1 degree - point lying on the line

>=2 degree - line-line intersection

A brief overview of our mapping pipeline

Also easily extends with available depth maps if applicable.

Triangulating proposals

Using shared neighboring 3D points to help avoid degeneracy!

Scoring each proposal \& Building tracks

Joint Optimization over Points, Lines and VPs

- Reprojection error
- Point-line associations
- Line-line associations via VP (construct VP tracks in advance)

Weighted by analyzing connections from 2D relational graphs inside the track

Plücker coordinates!

Local planes from degree-2 junctions

VP detection
VP track visualization (vertical)

Input
Ours

We do have quantitative evaluation

- Length Recall at certain threshold
- Precision at certain threshold
- Average number of image support / average number of line support

Line type	Method	R1	R5	R10	P1	P5	P10	\# supports
LSD	L3D++	37.0	153.1	218.8	53.1	80.8	$\mathbf{9 0 . 6}$	$(14.8 / 16.8)$
	ELSR	13.9	59.7	96.5	55.4	72.6	82.2	(N/A / N/A)
	Ours	$\mathbf{4 8 . 6}$	$\mathbf{1 8 5 . 2}$	$\mathbf{2 5 1 . 3}$	$\mathbf{6 0 . 1}$	$\mathbf{8 2 . 4}$	90.0	$(\mathbf{1 6 . 4} / \mathbf{2 0 . 5})$
SOLD2	L3D++	36.9	107.5	132.8	67.2	$\mathbf{8 6 . 8}$	$\mathbf{9 3 . 2}$	$(13.2 / 20.4)$
	Ours	$\mathbf{5 4 . 3}$	$\mathbf{1 5 1 . 1}$	$\mathbf{1 9 1 . 2}$	$\mathbf{6 9 . 8}$	84.6	90.0	$(\mathbf{1 6 . 5} / \mathbf{3 8 . 7})$
Method		R5	R10	R50	P5	P10	P50	\# supports
	373.7	831.6	2783.6	40.6	54.5	85.9	$(8.8 / 9.3)$	
ELSR	139.2	322.5	1308.0	38.5	48.0	74.5	(N/A / N/A)	
Ours (line-only)	472.1	1058.8	3720.7	$\mathbf{4 6 . 8}$	$\mathbf{5 8 . 4}$	$\mathbf{8 6 . 1}$	$(10.3 / 11.8)$	
Ours	$\mathbf{5 0 8 . 3}$	$\mathbf{1 1 5 4 . 5}$	$\mathbf{4 1 7 9 . 5}$	46.0	56.9	83.7	$(\mathbf{1 0 . 4} / \mathbf{1 2 . 0})$	

> Vp-Line Association
> Aachen database (6697 images)

Old saying: Every road line leads to Rome

Scalable to Rome 16k

British Museum from [47]

Piazza San Marco from [47]

4iv

London Bridge from [47]

$\triangle D \Delta \Delta D_{0}$

St. Paul's Cathedral from [47]

Courtroom (indoor and outdoor) from [26]

Lighthouse from [26]

Truck from [26]

Museum from [26]

∇^{∇}
Train from [26]

Temple from [26]

Localization

Before optimization

After optimization

Hybrid localization with points and lines

Point-alone localization with HLoc

Hybrid localization with 4 solvers

Scene	HLoc	PtLine	Ours
Great Court	$\mathbf{9 . 5} / \mathbf{0 . 0 5} / \mathbf{2 0 . 4}$	$11.2 / 0.07 / 17.8$	$9.6 / \mathbf{0 . 0 5} / 20.3$
King's College	$6.4 / \mathbf{0 . 1 0} / 37.0$	$6.5 / \mathbf{0 . 1 0} / 37.0$	$\mathbf{6 . 2} / \mathbf{0 . 1 0} / \mathbf{3 9 . 4}$
Old Hospital	$12.5 / 0.23 / 22.5$	$12.7 / 0.24 / 20.9$	$\mathbf{1 1 . 3} / \mathbf{0 . 2 2} / \mathbf{2 5 . 4}$
Shop Facade	$2.9 / 0.14 / 78.6$	$\mathbf{2 . 7} / \mathbf{0 . 1 2 / 7 9 . 6}$	$\mathbf{2 . 7} / 0.13 / \mathbf{8 1 . 6}$
St Mary's Church	$\mathbf{3 . 7} / 013 / 617$	$41 / 013 / 623$	$\mathbf{3 . 7 / 0 . 1 2 / \mathbf { 6 3 . 8 }}$
Avg.	$7.0 / 0.13 / 44.0$	$7.4 / 0.13 / 43.5$	$\mathbf{6 . 7 / \mathbf { 0 . 1 2 } / \mathbf { 4 6 . 1 }}$

Cambridge landmarks

		DUC 1	DUC 2
Points	HLoc	$49.0 / 69.2 / 80.3$	$52.7 / \mathbf{7 7 . 1} / 80.9$
Points	PtLine	$49.0 / 69.2 / \mathbf{8 1 . 8}$	$56.5 / 76.3 / 80.2$
+ Lines	Ours	$\mathbf{4 9 . 5} / \mathbf{7 2 . 2} / 81.3$	$\mathbf{6 0 . 3} / 76.8 / \mathbf{8 1 . 7}$

InLoc

Scene	HLoc	PtLine	Ours
Chess	$\mathbf{2 . 4} / \mathbf{0 . 8 4} / \mathbf{9 3 . 0}$	$\mathbf{2 . 4} / 0.85 / 92.7$	$2.5 / 0.85 / 92.3$
Fire	$2.3 / 0.89 / 88.9$	$2.3 / 0.91 / 87.9$	$\mathbf{2 . 1} / \mathbf{0 . 8 4} / \mathbf{9 5 . 5}$
Heads	$\mathbf{1 . 1} / \mathbf{0 . 7 5} / \mathbf{9 5 . 9}$	$1.2 / 0.81 / 95.2$	$\mathbf{1 . 1} / 0.76 / \mathbf{9 5 . 9}$
Office	$3.1 / 0.91 / 77.0$	$3.2 / 0.96 / 74.5$	$\mathbf{3 . 0} / \mathbf{0 . 8 9} / \mathbf{7 8 . 4}$
Pumpkin	$5.0 / 1.32 / 50.4$	$5.1 / 1.35 / 49.0$	$\mathbf{4 . 7} / \mathbf{1 . 2 3} / \mathbf{5 2 . 9}$
Redkitchen	$4.2 / \mathbf{1 . 3 9} / 58.9$	$4.3 / 1.42 / 58.0$	$\mathbf{4 . 1} / \mathbf{1 . 3 9} / \mathbf{6 0 . 2}$
Stairs	$5.2 / 1.46 / 46.8$	$4.8 / 1.33 / 51.9$	$\mathbf{3 . 7} / \mathbf{1 . 0 2} / \mathbf{7 1 . 1}$
Avg.	$3.3 / 1.08 / 73.0$	$3.3 / 1.09 / 72.7$	$\mathbf{3 . 0} / \mathbf{1 . 0 0} / \mathbf{7 8 . 0}$

7scenes RGB

Scene	HLoc w/ Depth	PtLine	Ours w/ Depth
Chess	$\mathbf{2 . 4} / \mathbf{0 . 8 1} / 94.8$	$\mathbf{2 . 4} / \mathbf{0 . 8 1} / \mathbf{9 5 . 0}$	$\mathbf{2 . 4} / 0.82 / 94.0$
Fire	$1.9 / 0.76 / 96.4$	$1.9 / 0.76 / \mathbf{9 6 . 6}$	$\mathbf{1 . 7} / \mathbf{0 . 7 1} / \mathbf{9 6 . 6}$
Heads	$1.1 / 0.73 / 99.0$	$1.1 / 0.74 / \mathbf{9 9 . 4}$	$\mathbf{1 . 0} / \mathbf{0 . 7 2} / \mathbf{9 9 . 4}$
Office	$2.7 / 0.83 / 83.7$	$2.7 / 0.83 / 83.9$	$\mathbf{2 . 6} / \mathbf{0 . 8 0} / \mathbf{8 4 . 7}$
Pumpkin	$4.1 / \mathbf{1 . 0 5} / \mathbf{6 1 . 3}$	$4.0 / 1.06 / 60.8$	$\mathbf{4 . 0} / \mathbf{1 . 0 5} / 61.1$
Redkitchen	$3.3 / \mathbf{1 . 1 2} / 72.1$	$\mathbf{3 . 2} / \mathbf{1 . 1 2} / 72.5$	$3.3 / \mathbf{1 . 1 2} / \mathbf{7 3 . 0}$
Stairs	$4.7 / 1.25 / 53.4$	$4.3 / 1.16 / 55.9$	$\mathbf{3 . 2} / \mathbf{0 8 6} / \mathbf{7 6 . 0}$
Avg.	$2.9 / 0.94 / 80.1$	$2.8 / 0.93 / 80.6$	$\mathbf{2 . 6} / \mathbf{0 . 8 7} / \mathbf{8 3 . 5}$

Consistent improvement with lines on public benchmarks

Localization on LaMAR [A]

Large-scale 3D line maps of CAB building

Recall(\%) @ 3cm-3 ${ }^{\circ}$

Recall(\%) @ 2cm-2․

Recall(\%) @ 5cm-5 ${ }^{\circ}$

[A] Sarlin \& Dusmanu et al. LaMAR: Benchmarking Localization and Mapping for AR, ECCV 2022
Slide credits: Thomas Birchler, Shinjeong Kim, Elias Salameh, and Aidyn Ubingazhibov from ETH Zurich

Hybrid bundle adjustment with points and lines

	COLMAP [42]	[42] + LIMAP (line-only)	[42] + LIMAP
ai_001_001	$68.0 / 87.0 / 91.3$	$78.3 / 91.1 / 93.8$	$\mathbf{8 0 . 0} / \mathbf{9 1 . 7} / \mathbf{9 4 . 2}$
ai_001_002	$75.2 / 90.2 / 94.0$	$87.5 / 95.6 / 97.3$	$\mathbf{8 8 . 5} / \mathbf{9 6 . 0} / \mathbf{9 7 . 6}$
ai_001_003	$83.8 / 94.4 / 96.6$	$82.9 / 94.0 / 96.4$	$\mathbf{8 5 . 7} / \mathbf{9 5 . 1} / \mathbf{9 7 . 1}$
ai_001_004	$\mathbf{7 9 . 2} / \mathbf{8 8 . 9 / 9 0 . 9}$	$67.1 / 82.1 / 86.0$	$77.3 / 88.3 / 90.6$
ai_001_005	$85.1 / 94.9 / 97.0$	$88.4 / 96.1 / 97.7$	$\mathbf{9 0 . 9 / \mathbf { 9 7 . 0 } / \mathbf { 9 8 . 2 }}$
ai_001_006	$83.4 / 93.1 / 95.7$	$80.2 / 92.9 / 95.7$	$\mathbf{8 4 . 4} / \mathbf{9 3 . 8} / \mathbf{9 6 . 3}$
ai_001_007	$59.0 / 68.5 / 70.6$	$64.5 / \mathbf{7 0 . 6} / \mathbf{7 1 . 9}$	$\mathbf{6 5 . 0} / 70.3 / 7.7$
ai_001_008	$84.9 / 94.9 / 96.9$	$89.5 / 96.5 / 97.9$	$\mathbf{9 1 . 3} / \mathbf{9 7 . 1} / \mathbf{9 8 . 2}$
Average \uparrow	$77.3 / 89.0 / 91.6$	$79.8 / 89.9 / 92.1$	$\mathbf{8 2 . 9} / \mathbf{9 1 . 2} / \mathbf{9 3 . 0}$
Median error \downarrow	0.188	0.173	$\mathbf{0 . 1 4 6}$

Line-assisted multi-view stereo

w. Line-based Energy

Preliminary line-assisted dense mapping.

Featuremetric Line Refinement

Sampling by 2-level intersection!

a) Reference image

b) Feature map

c) Target image

d) Correspondences

Line patching with oriented bounding box to ensure scalability

Benchmarking

	Detector	LSD	HAWPv3	TP-LSD	DeepLSD
Matcher					
LBD	$42.2 / 58.5 /(14.0 / 14.6)$	$6.0 / 58.0 /(7.8 / 9.8)$	$21.6 / 73.2 /(9.1 / 9.3)$	$30.7 / 69.3 /(12.2 / 18.7)$	$64.6 / 70.0 /(15.8 / 18.1)$
SOLD2	$48.3 / 59.2 /(15.8 / 19.1)$	$14.7 / 62.7 /(11.2 / 20.1)$	$44.4 / 76.4 /(14.3 / 16.7)$	$50.8 / 74.4 /(15.1 / 32.2)$	$72.0 / 71.4 /(18.1 / 24.9)$
L2D2	$44.4 / 59.6 /(15.0 / 16.8)$	$13.5 / 63.4 /(10.7 / 18.3)$	$39.5 / 78.1 /(13.7 / 15.4)$	$43.9 / 72.8 /(13.7 / 24.9)$	$69.2 / 70.4 /(17.0 / 22.2)$
LineTR	$37.0 / 58.3 /(12.8 / 13.3)$	$5.4 / 60.5 /(8.4 / 10.7)$	$43.0 / 76.3 /(14.5 / 16.7)$	$29.0 / 70.1 /(12.3 / 19.9)$	$71.9 / 69.4 /(17.6 / 23.9)$
Endpts SP + NN		$48.8 / 58.6 /(15.5 / 18.2)$	$16.2 / 63.2 /(11.2 / 20.0)$	$43.7 / 75.8 /(14.3 / 16.5)$	$49.1 / 73.7 /(14.7 / 31.4)$
Endpts SP + SG		$48.4 / 58.0 /(15.8 / 18.9)$	$16.0 / 61.9 /(11.3 / 20.9)$	$47.1 / 76.1 /(14.5 / 16.8)$	$50.0 / 72.8 /(15.5 / \mathbf{3 4 . 4})$

Pautrat et al. DeepLSD: Line Segment Detection and Refinement with Deep Image Gradients, CVPR 2023

Next Step: Hybrid Incremental SfM

3D Line Mapping Revisited ${ }_{\text {smummen }}$

Shaohui Liu, Yifan Yu, Rémi Pautrat, Marc Pollefeys, Viktor Larsson

ETHzürich

Lund University

