

3D Line Mapping Revisited

THU-PM-080

Shaohui Liu, Yifan Yu, Rémi Pautrat, Marc Pollefeys, Viktor Larsson

Robust Scalable Pipeline for Mapping 3D Lines

Examples of Our 3D Line Maps

Opening up new possibilities to multiple applications

Example: Hybrid Localization

after optimization

point-alone localization

hybrid point-line localization

(T/R) err \downarrow Acc \uparrow

Dataset	HLoc*	PtLine	Ours
Cambridge 7Scenes	7.0 / 0.13 / 44.0 3.3 / 1.08 / 73.0	7.4 / 0.13 / 43.5 3.3 / 1.09 / 72.7	6.7 / 0.12 / 46.1 3.0 / 1.00 / 78.0
Dataset	HLoc* w/ Dep	pth PtLine	Ours w/ Depth
7Scenes w/ de	pth 2.9 / 0.94 / 80	0.1 2.8 / 0.93 / 80.6	2.6 / 0.87 / 83.5

Example: Hybrid Bundle Adjustment

	Med. error \downarrow	AUC @ $(1^{\circ} / 3^{\circ} / 5^{\circ}) \uparrow$
COLMAP	0.188	77.3 / 89.0 / 91.6
COLMAP + LIMAP refinement	0.146	82.9 / 91.2 / 93.0

	$(\mathbf{I} / \mathbf{K}) \operatorname{cll} \downarrow$	Acc.
HLoc*	5.2 / 1.46	46.8
HLoc* w/ depth	4.7 / 1.25	53.4
PtLine	4.8 / 1.33	51.9
Ours w/ L3D++	4.1 / 1.14	60.8
Ours w/ LIMAP	3.7 / 1.02	71.1

Example: Line-assisted stereo

Original COLMAP MVS [45]

w. Line-based Energy

Open-sourcing – LIMAP: a toolbox for mapping and localization with line features

modular design + binded classes and interfaces in Python supporting multiple line detectors, matchers and vanishing point estimators

Snavely et al. Bundler (2010)

Schönberger et al. COLMAP (2016)

Modern multi-view geometry software heavily rely on feature points.

What is missing from the 3D point map?

SuperPoint + COLMAP point triangulator

SuperPoint + COLMAP point triangulator

Line Mapping

Point-line Association

Von Gioi et al. LSD: A fast line segment detector with a false detection control (2010)

Zhou et al. LCNN (2019)

Pautrat et al. SOLD2 (2021)

Challenges on mapping lines

- Inconsistent endpoints
- Line Fragmentation
- No Two-view Geometric Verification
- Weak matchers
- Degenerate Configurations

•

Challenges on mapping lines

- Inconsistent endpoints
- Line Fragmentation
- No Two-view Geometric Verification
- Weak matchers
- Degenerate Configurations

)

Algebraic Line triangulation

Ray-plane intersection on both endpoints respectively

Degeneracy happens when ray lies on the plane! 0 / 1 / 2 degenerate endpoints

1 degree – point lying on the line

>=2 degree – line-line intersection

Blue – degree 1 red – degree 2 black degree >= 3

A brief overview of our mapping pipeline

Also easily extends with available depth maps if applicable.

Triangulating proposals

Using shared neighboring 3D points to help avoid degeneracy!

Scoring each proposal & Building tracks

2D + 3D metric

Joint Optimization over Points, Lines and VPs

- Reprojection error
- Point-line associations
- Line-line associations via VP (construct VP tracks in advance)

Weighted by analyzing connections from 2D relational graphs inside the track

Plücker coordinates!

Local planes from degree-2 junctions

Iteratively optimize and merge VP tracks

[LOG] Orthogonal pair detected: 0 / 1, angle = 89.93
[LOG] Orthogonal pair detected: 0 / 2, angle = 89.94
[LOG] Orthogonal pair detected: 0 / 3, angle = 89.97
[LOG] Orthogonal pair detected: 0 / 4, angle = 89.90
[LOG] Orthogonal pair detected: 1 / 2, angle = 89.88
[LOG] Orthogonal pair detected: 3 / 4, angle = 90.00

-> Atlanta world with two Manhattan axis!

VP detection

VP track visualization (vertical)

Ours

2

Input

Line3D++

Input

Ours

ELSR (CVPR 2022)

Ours

We do have quantitative evaluation

- Length Recall at certain threshold
- Precision at certain threshold

 Average number of image support / average number of line support

Line type	Method	R1	R5	R10	P1	P5	P10	# supports
LSD	L3D++ ELSR Ours	37.0 13.9 48.6	153.1 59.7 185.2	218.8 96.5 251.3	53.1 55.4 60.1	80.8 72.6 82.4	90.6 82.2 90.0	(14.8 / 16.8) (N/A / N/A) (16.4 / 20.5)
SOLD2	L3D++ Ours	36.9 54.3	107.5 151.1	132.8 191.2	67.2 69.8	86.8 84.6	93.2 90.0	(13.2 / 20.4) (16.5 / 38.7)
Method]	R5	R10	R50	P5	P10	P50	# supports

Vp-Line Association Aachen database (6697 images)

· Sater a

Ň

Old saying: Every road line leads to Rome

Scalable to Rome 16k

Localization

Before optimization

After optimization

Hybrid localization with points and lines

Point-alone localization with HLoc

Hybrid localization with 4 solvers

Scene	HLoc	PtLine	Ours	Scene	HLoc	PtLine	Ours
Great Court King's College Old Hospital Shop Facade	9.5 / 0.05 / 20.4 6.4 / 0.10 / 37.0 12.5 / 0.23 / 22.5 2.9 / 0.14 / 78.6 3.7 / 0.13 / 61.7	11.2 / 0.07 / 17.8 6.5 / 0.10 / 37.0 12.7 / 0.24 / 20.9 2.7 / 0.12 / 79.6 4 1 / 0 13 / 62 3	9.6 / 0.05 / 20.3 6.2 / 0.10 / 39.4 11.3 / 0.22 / 25.4 2.7 / 0.13 / 81.6 3 7 / 0.12 / 63.8	Chess Fire Heads Office Pumpkin	2.4 / 0.84 / 93.0 2.3 / 0.89 / 88.9 1.1 / 0.75 / 95.9 3.1 / 0.91 / 77.0 5.0 / 1.32 / 50.4	2.4 / 0.85 / 92.7 2.3 / 0.91 / 87.9 1.2 / 0.81 / 95.2 3.2 / 0.96 / 74.5 5 1 / 1 35 / 49 0	2.5 / 0.85 / 92.3 2.1 / 0.84 / 95.5 1.1 / 0.76 / 95.9 3.0 / 0.89 / 78.4 4 7 / 1 23 / 52.9
Avg.	7.0 / 0.13 / 44.0	7.4 / 0.13 / 43.5	6.7 / 0.12 / 46.1	Redkitchen Stairs	4.2 / 1.39 / 58.9 5.2 / 1.46 / 46.8	4.3 / 1.42 / 58.0 4.8 / 1.33 / 51.9	4.1 / 1.25 / 52.9 4.1 / 1.39 / 60.2 3.7 / 1.02 / 71.1
				Avg.	3.3 / 1.08 / 73.0	3.3 / 1.09 / 72.7	3.0 / 1.00 / 78.0

Cambridge landmarks

		DUC 1	DUC 2
Points	HLoc	49.0 / 69.2 / 80.3	52.7 / 77.1 / 80.9
Points + Lines	PtLine Ours	49.0 / 69.2 / 81.8 49.5 / 72.2 / 81.3	56.5 / 76.3 / 80.2 60.3 / 76.8 / 81.7

InLoc

7scenes RGB

Scene	HLoc w/ Depth	PtLine	Ours w/ Depth
Chess	2.4 / 0.81 / 94.8	2.4 / 0.81 / 95.0	2.4 / 0.82 / 94.0
Fire	1.9 / 0.76 / 96.4	1.9 / 0.76 / 96.6	1.7 / 0.71 / 96.6
Heads	1.1 / 0.73 / 99.0	1.1 / 0.74 / 99.4	1.0 / 0.72 / 99.4
Office	2.7 / 0.83 / 83.7	2.7 / 0.83 / 83.9	2.6 / 0.80 / 84.7
Pumpkin	4.1 / 1.05 / 61.3	4.0 / 1.06 / 60.8	4.0 / 1.05 / 61.1
Redkitchen	3.3 / 1.12 / 72.1	3.2 / 1.12 / 72.5	3.3 / 1.12 / 73.0
Stairs	4.7 / 1.25 / 53.4	4.3 / 1.16 / 55.9	3.2 / 0 86 / 76.0
Avg.	2.9 / 0.94 / 80.1	2.8 / 0.93 / 80.6	2.6 / 0.87 / 83.5

7scenes RGBD

Consistent improvement with lines on public benchmarks

Localization on LaMAR [A]

[A] Sarlin & Dusmanu et al. LaMAR: Benchmarking Localization and Mapping for AR, ECCV 2022 Slide credits: Thomas Birchler, Shinjeong Kim, Elias Salameh, and Aidyn Ubingazhibov from ETH Zurich

Hybrid bundle adjustment with points and lines

	COLMAP [42]	[42] + LIMAP (line-only)	[42] + LIMAP
ai_001_001	68.0/87.0/91.3	78.3 / 91.1 / 93.8	80.0 / 91.7 / 94.2
ai_001_002	75.2 / 90.2 / 94.0	87.5 / 95.6 / 97.3	88.5 / 96.0 / 97.6
ai_001_003	83.8 / 94.4 / 96.6	82.9 / 94.0 / 96.4	85.7 / 95.1 / 97.1
ai_001_004	79.2 / 88.9 / 90.9	67.1 / 82.1 / 86.0	77.3 / 88.3 / 90.6
ai_001_005	85.1 / 94.9 / 97.0	88.4 / 96.1 / 97.7	90.9 / 97.0 / 98.2
ai_001_006	83.4 / 93.1 / 95.7	80.2 / 92.9 / 95.7	84.4 / 93.8 / 96.3
ai_001_007	59.0 / 68.5 / 70.6	64.5 / 70.6 / 71.9	65.0 / 70.3 / 71.7
ai_001_008	84.9 / 94.9 / 96.9	89.5 / 96.5 / 97.9	91.3 / 97.1 / 98.2
Average ↑	77.3 / 89.0 / 91.6	79.8 / 89.9 / 92.1	82.9 / 91.2 / 93.0
Median error \downarrow	0.188	0.173	0.146

Line-assisted multi-view stereo

Original COLMAP MVS [45]

w. Line-based Energy

Preliminary line-assisted dense mapping.

Featuremetric Line Refinement

Sampling by 2-level intersection!

Line patching with oriented bounding box to ensure scalability

Benchmarking

Detector	LSD	HAWPv3	TP-LSD	SOLD2	DeepLSD
LBD	42.2 / 58.5 / (14.0 / 14.6)	6.0 / 58.0 / (7.8 / 9.8)	21.6 / 73.2 / (9.1 / 9.3)	30.7 / 69.3 / (12.2 / 18.7)	64.6 / 70.0 / (15.8 / 18.1)
SOLD2	48.3 / 59.2 / (15.8 / 19.1)	14.7 / 62.7 / (11.2 / 20.1)	44.4 / 76.4 / (14.3 / 16.7)	50.8 / 74.4 / (15.1 / 32.2)	72.0 / 71.4 / (18.1 / 24.9)
L2D2	44.4 / 59.6 / (15.0 / 16.8)	13.5 / 63.4 / (10.7 / 18.3)	39.5 / 78.1 / (13.7 / 15.4)	43.9 / 72.8 / (13.7 / 24.9)	69.2 / 70.4 / (17.0 / 22.2)
LineTR	37.0 / 58.3 / (12.8 / 13.3)	5.4 / 60.5 / (8.4 / 10.7)	43.0 / 76.3 / (14.5 / 16.7)	29.0 / 70.1 / (12.3 / 19.9)	71.9 / 69.4 / (17.6 / 23.9)
Endpts SP + NN	48.8 / 58.6 / (15.5 / 18.2)	16.2 / 63.2 / (11.2 / 20.0)	43.7 / 75.8 / (14.3 / 16.5)	49.1 / 73.7 / (14.7 / 31.4)	72.8 / 70.3 / (17.7 / 24.0)
Endpts SP + SG	48.4 / 58.0 / (15.8 / 18.9)	16.0 / 61.9 / (11.3 / 20.9)	47.1 / 76.1 / (14.5 / 16.8)	50.0 / 72.8 / (15.5 / 34.4)	74.6 / 69.5 / (18.2 / 24.8)

Next Step: Hybrid Incremental SfM

3D Line Mapping Revisited (THU-PM-080)

Shaohui Liu, Yifan Yu, Rémi Pautrat, Marc Pollefeys, Viktor Larsson

